
J .  Fluid Mech. (1989), vol. 204, pp .  185-228 
Printed in Oreat Britain 

185 

A canonical statistical theory of oceanic 
internal waves 

By KENNETH R. ALLEN' A N D  RICHARD I. JOSEPH2 
The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20707-6099, USA 

a Department of Electrical and Computer Engineering, The Johns Hopkins University, 
Baltimore, MD 21218, USA 

(Received 9 June 1988 and in revised form 4 January 1989) 

We use the methods of statistical mechanics to  develop a theoretical relationship 
between the observed oceanic spectra and the probability distributions usually 
studied in statistical mechanics. We also find that the assumption that in terms of 
Lagrangian variables the oceanic internal wave field is near canonical equilibrium 
(i.e. the internal wave modes are populated in accordance with a Maxwell- 
Boltzmann- type distribution) yields expressions for the various marginal or 
reduced Eulerian spectra associated with both moored and towed measurements 
which are in striking qualitative agreement with experiment. In  developing this 
theory it is important to distinguish carefully between Lagrangian and Eulerian 
variables. The important difference between the two sets of variables is due to the 
advective nonlinearity (i.e. ( v - V )  u where u is the Eulerian velocity) which is present 
only in the Eulerian frame. Our method treats the dynamics within the Lagrangian 
frame, where because of the absence of the advective nonlinearity it is fundamentally 
simpler, and then transforms to the Eulerian or measurement frame. We find that a t  
small wavenumbers the four-dimensional Eulerian frequency wavenumber spectrum 
is approximately equal to the corresponding Lagrangian frequency wavenumber 
spectrum. At large wavenumbers, however, advective contributions become 
important and the two types of spectra are significantly different. While from a 
Lagrangian frame point of view the system is entirely wavelike, a t  large 
wavenumbers the Eulerian spectrum is not confined to the dispersion surface and the 
system, from an Eulerian frame point of view, is not wavelike. Further, the three- 
dimensional Eulerian wavenumber spectrum exhibits a large-wavenumber advective 
tail which decays as a power law and results in one-dimensional marginal spectra 
which are in excellent qualitative agreement with experiment. The above features 
are exhibited independent of the detailed nature of the underlying Lagrangian 
frequency wavenumber spectrum. 

1. Introduction 
In this paper we consider the application of some methods from classical statistical 

mechanics to the problem of calculating the various fluctuation spectra observed in 
the ocean. We are concerned here with those lengthscales and timescales which are 
typically ascribed to  internal waves. The model variance spectrum suggested by 
Garrett & Munk (1972, 1975, hereinafter GM), has synthesized a variety of oceanic 
temperature and velocity data into a single unifying structure. The model assumes 
that these fields are due to a random superposition of linear internal waves and that 
the covariance matrix associated with a joint amplitude distribution function is 
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diagonal in both vertical mode number and horizontal wavevector. The diagonal 
elements of the covariance matrix are then empirically adjusted to obtain agreement 
between their model and various marginal or reduced spectra associated with the 
above observed fields. While the GM model provides a useful and surprisingly reliable 
catalogue of existing experiments, it is empirical and does not presume to provide a 
theoretical explanation for the various observed spectra. It is our goal in this paper 
to develop a clear theoretical relationship between the observed oceanic spectra and 
the probability distributions which are usually studied in statistical mechanics 
(Prigogine 1962; Mori 1965; Fox 1978; van Kampen 1976). 

In  developing this theory it will be important to  distinguish carefully between 
Lagrangian and Eulerian variables. In order to clarify this point we need to examine 
briefly the important difference between Lagrangian and Eulerian variables. In  a 
Lagrangian formulation the fluid is divided into a number of microscopically large 
but macroscopically small parcels that  are identified by the various values of a three- 
dimensional parameter which we shall denote by the vector r .  While it is not 
necessary, it is usually the case that r corresponds to  the position of the parcel under 
some reference condition often taken to be the undisturbed or static condition. Once 
selected, a specific value for r remains with the fluid parcel and does not change 
throughout the dynamic evolution of the system. We shall denote the Lagrangian 
displacement by s,(r, t)  and the Lagrangian velocity by v , ( r , t )  where t is time. 
The Eulerian displacement will be denoted by s,(x, t )  and the Eulerian velocity by 
v E ( x ,  t )  where a given value for the Eulerian label x corresponds to  a specific point in 
space and refers to the fluid parcel which happens to be at that point at the time t .  
Thus, a given value for the Eulerian label x does not always refer to the same fluid 
parcel. A formulation in terms of Lagrangian variables retains a faithful 
correspondence with the particles of Newtonian mechanics. Such a formulation can 
be given in terms of a Hamiltonian and Hamilton’s canonical equations, or the 
Lagrangian variables can be used directly with Hamilton’s principle to obtain the 
well-known variational form of continuum mechanics. It is the distribution of these 
variables which is usually studied in statistical mechanics. In  the case of Eulerian 
variables no such straightforward Hamiltonian formulation is possible. While the 
Eulerian equations of motion have been cast into a variational form (e.g. Seliger & 
Whitham 1968; Henyey 1983) which is sometimes referred to  as canonical, such a 
formulation requires the introduction of additional variables and constraints and is 
significantly different from the usual well-known Hamiltonian dynamics. The 
important difference between the Eulerian and Lagrangian equations of motion is 
the flow term ( v E - V ) u ,  which occurs in the Eulerian equations but not in the 
Lagrangian equations. 

Most observations and empirical studies of geophysical systems such as the ocean 
are in terms of Eulerian variables. The GM model, for example, is in terms of 
Eulerian variables. On the other hand, the methods of statistical mechanics which 
might be useful for understanding and interpreting these studies are usually 
formulated in terms of Lagrangian variables. This raises the issue of how to relate 
statistical quantities, such as spectra, which are given in terms of Lagrangian 
variables to the corresponding quantities given in terms of Eulerian variables. The 
difficulty is that in general the exact transformation between the two sets of 
variables is not tractable. The problem of relating Lagrangian and Eulerian aspects 
of fluid flow is an old one which goes back a t  least to G. I. Taylor (1921). For ocean 
surface waves a recent physical discussion is given by Longuet-Higgins (1986). In  a 
recent paper (Allen & Joseph 1988) i t  was shown that there exists a class of systems 
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for which the problem of implementing an exact transformation can be avoided, and 
still a tractable relation between Lagrangian and Eulerian spectra can be obtained. 
It was shown that at small wavenumbers the Eulerian and Lagrangian spectra are 
approximately equal, but a t  large wavenumbers, independent of the large 
wavenumber structure of the Lagrangian spectra, the Eulerian wavenumber spectra 
exhibit a power-law decay. In this paper we will argue that the moored spectra are 
dominated by small wavenumbers a t  which the Eulerian and Lagrangian spectra are 
approximately equal and show that the moored frequency spectra calculated on this 
basis are in excellent qualitative agreement with experiment. We will further argue 
that the observed towed spectra are mostly a t  wavenumbers for which the Eulerian 
and Lagrangian wavenumber spectra are significantly different, and show that the 
large-wavenumber power-law decay exhibited by our theoretical Eulerian spectra is 
in excellent qualitative agreement with experiment. It will also be clear that 
experiments which focus upon this decaying Eulerian tail cannot yield information 
about fund amen tal d ynami cal processes. 

The following is a brief outline of what is done in this paper. We first develop the 
four-dimensional Lagrangian frequency wavenumber displacement spectra which 
are proportional to the distribution of energy in frequency w and three-dimensional 
wave vector k, and discuss the relation between this and the distribution of energy 
among the linear internal wave modes. We next define the Eulerian variables in 
terms of the Lagrangian variables and obtain the four-dimensional Eulerian- 
frequency wavenumber displacement spectrum. It will be clear that in general the 
two types of spectra are significantly different. Finally, we discuss our results and 
present a comparison to experiment for a variety of marginal Eulerian spectra and 
make some suggestions for future investigations. Since the course of this treatment 
is lengthy and at places a bit tortuous, we devote the rest of this introductory section 
to  a more detailed outline of the important mathematical steps and physical 
assumptions which can serve as a guide to the development in the following sections. 

In our canonical formulation the Cartesian components of the Lagrangian 
displacement sLa(rr t )  and velocity uLa(r, t ) ,  1 < a 6 3, are expressed in the form 

and 

where the q j ( t ) ,  are real independent generalized displacements (a complex 
representation can also be used), the pi(t)  are the corresponding canonically 
conjugate momenta, and M is the number of degrees of freedom (later, M will be 
allowed to become arbitrarily large). In (1 .1)  and (1.2) the &(r) are real 
eigenfunctions associated with writing the quadratic part of the Hamiltonian in 
separated form such that 

M 

H(P> q)  = 4 )  + K(P, q) = Z (4Qj) .k:(t)  +qi(t)l+ V,(P, q), (1.3) 

and the SZ, are the eigenfrequencies associated with the linear internal waves. In  (1.3) 
the term Ho(p,  q) ,  which is quadratic in the dynamical variables, corresponds to the 
linear solutions and we shall refer to i t  as the free-field Hamiltonian. The term 
V,(p,q), which is of cubic and higher order in the dynamical variables, describes 
the nonlinear interactions and we shall refer to it as the interaction potential. Here 

j-1 
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( p ,  q )  denotes the set { p l ,  ql, . . . , p M ,  qM)  of canonically conjugate dynamical variables. 
We point out that  in the completely general case there are also modes for which the 
free-field Hamiltonian is not of the harmonic oscillator type given in (1.3). For 
example, the translational modes (sometimes called geostrophic or vortical modes) 
are of the free-particle type which require 

M 

BO(P4) = c C&.(t), (1.4) 
5=1 

where the C, are constants. It is clear that  the formulation can be generalized to 
include such details, but to do so now would increase the already considerable 
mathematical complexity and tend to  obscure the underlying physics. This 
approximation ignores some potentially important issues concerning the diffusion of 
fluid parcels, but is adequate for our purposes here. 

The Cartesian components of the Eulerian displacement sEa(x, t )  and velocity 
vEa(x, t )  can similarly be written in the form 

and 

While the form of (1 5 )  and (1.6) is identical to that of (1.1) and (1.2) respectively, 
in general the a,(t) and b,(t) are not related in any simple way to  the q j ( t )  and p,( t ) .  
The linearized equations of motion for the two sets of variables are the same, so that 
for small enough amplitude disturbances we may write 

q t )  = q,tt), (1.7) 

and bj ( t )  = P,(t). (1.8) 
However, the nonlinear terms associated with the two sets of variables are different. 
The dynamic nonlinearities also contribute to the Eulerian equations of motion, but, 
as previously noted, because individual fluid parcels are constantly flowing into 
and out of the region of interest there is an additional nonlinear flow term given by 
( v E - V )  vE which we shall call the advective nonlinearity. Thus, for larger-amplitude 
disturbances (1.7) and (1.8) are not valid and the exact transformation between the 
variables becomes intractable. It is important to  realize that the two types of 
nonlinearities are fundamentally different. The dynamic nonlinearities are associated 
with the details of the forces between collections of fluid parcels. The advective 
nonlinearity is associated with the flow of fluid parcels into and out of a fixed region 
of space and is strictly an Eulerian frame concept. From a Lagrangian frame point 
of view the advective nonlinearity is a kinematic effect. It is, however, important to 
account for this effect when making comparisons between theory and experiment. 

In statistical mechanics it is the distribution of the canonically conjugate variables 
p,(t) and q5(t) which is usually studied. There exists a considerable theoretical 
precedent to assume that the statistical distribution of the canonically conjugate 
dynamical variables is of the Gaussian form 

where g ( p , q )  is the phase-space density function, Z is the partition function (i.e. 
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normalization factor), and A L j  is the average Lagrangian wave action associated with 
t h e j t h  mode. I n  general the average wave action is given by 

A .  
ALj = -2 (1.10) 

Qj' 

where Ai is the average energy of the j t h  mode. The most familiar example of this is 
canonical equilibrium in the weak interaction approximation (cf. Prigogine 1962) in 
which the linear energy is equipartitioned among the accessible modes so that the 
average energy per mode is given by A j  = E ,  which, for the canonical distribution, 
is independent of the mode index j. The distribution given by (1.9) is more general 
than the canonical distribution and can include cases for which the wave system is 
interacting with a generalized heat bath (e.g. source and sink contributions) as well 
as some cases for which nonlinear interactions from T',(p,q) are important over a t  
least a part of mode and wavenumber space. We shall give a more detailed discussion 
of these various cases later, but for now we will simply assume the phase-space 
density function (1.9) fOT the general case in which the average wave action is given 
by (1.10). We defer this discussion until the next section in order not to distract from 
the direct outline of precisely what is done in this paper. 

Once the phase-space density function has been specified, the expectation value 
E[F(p ,  q,  t ) ]  of any function F ( p ,  q, t )  of the Lagrangian dynamical variables is 
obtained by computing 

M 

. w Y p >  q, t ) I  = s . (P,  q ,  t ) S ( P ,  q )  n dPjdq,, (1.11) 

where unless otherwise noted all integrals in this paper are over the full range of the 
integration variable. I n  particular we shall be concerned with the two space point 
two time point Lagrangian displacement correlation functions CLsaxp(r, R ,  7) defined 

j=1 

by 
CLsaxp(r, R , 7 )  = E[sLa(r f@,  t + 7 ) ~ L p ( r - i R , t ) l ,  (1.12) 

where r is midway between the two space points separated by R and we have 
anticipated temporal stationarity (i.e. the correlation functions are independent of 
the reference time t ) .  The four-dimensional Lagrangian frequency wavenumber 
spect,ra SLsaB(r, k, w )  are then defined as 

S L ~ ~ ~ P ' ,  k,  W )  = d3R d7 CLsaxp(r, R ,  7) exp { - i(k. R -w7) } .  (1.13) I S  
We note that in the usual oceanic case the system is horizontally homogeneous (i.e. 
independent of the horizontal components of r )  but because of vertical stratification 
and the free-surface boundary condition these spectra generally depend upon the 
depth. The four-dimensional Lagrangian frequency wavenumber spectra and their 
Eulerian counterparts (to be defined shortly) provide the basis in terms of which the 
studies in this paper are conducted. 

The correlation functions given by (1.12) involve the two times t and t + 7. In  order 
to use ( 1 . 1  1) to calculate the expectation value we must express the displacement a t  
the time t + 7  in terms of the canonically conjugate variables p j ( t )  and qi(t) and 
explicit functions of 7. For this purpose we will use 

pj ( t  + 7) = pi@) cos ( 5 2 , ~ )  - qi( t )  sin ( Qi 7), (1.14) 

qj(t + 7) = q j ( t )  cos (a, T )  +p,(t) sin (52, T ) ,  (1.15) and 
7-2  
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which correspond to the linear approximation, but can also be used to approximate 
the short-time dependence in the weak interaction approximation. In a full 
treatment of the weak interaction approximation the various correlation functions 
exhibit a slow exponential decay with time. If this decay rate is small in comparison 
to the corresponding frequency, then the approximation given by (1.14) and (1.15) 
is valid. We can then use (1.1) and (1.9)-( 1.15) to compute the various Lagrangian 
displacement correlation functions and the corresponding frequency wavenumber 
spectra. These results will be given in terms of the average Lagrangian wave action 
A, which through (1.10) is a measure of the distribution of energy among the linear 
internal wave modes. This energy distribution (i.e. Aj) must ultimately be specified, 
and we shall consider several important cases later, but our primary purpose is to 
establish a clear theoretical relationship between the observed Eulerian spectra and 
the fundamental Lagrangian energy distribution. 

Our discussion to this point has focused primarily upon the calculation of the 
Lagrangian correlation functions and spectra. We shall now turn our attention to the 
calculation of the corresponding Eulerian quantities. The GM result can be obtained 
by assuming that the Eulerian amplitudes a,(t) and b,(t) are distributed in accordance 
with the Gaussian form (1.9) with A,, replaced by the average Eulerian wave action 
A,, and the replacements indicated by (1.7) and (1.8). It is the Eulerian wave action 
A, which is empirically adjusted by GM to  obtain agreement with the observed 
spectra. While this procedure provides an empirical description of the observed 
spectra, it does not provide the link between the observed spectra and the 
fundamental distributions which are studied in statistical mechanics. In order to 
obtain this link we define the Eulerian displacement in terms of the Lagrangian 
displacement by the relation 

s,,z(x, t )  = d3rsLa(r, t )  ~ ( X - Y )  J ( s ) ,  (1.16) I 
where 6(x - y )  is a three-dimensional delta function, 

y = r + s ( r , t ) ,  (1.17) 

and J(s)  is the Jacobian determinant associated with the transformation (1.17). 
Equation (1.16) is a well-known relation (Green 1954 ; Mori, Oppenheiw & Ross 1962 ; 
Hardy 1963) which can be used to express any Eulerian variable (e.g. vEa(x,t)) in 
terms of the corresponding Lagrangian quantity. It has recently been used by 
Abarbanel & Rouhi (1987) in a hydrodynamic context to  express the Eulerian mass 
density in terms of Lagrangian variables. 

The two space point two time point Eulerian displacement correlation functions 
CEsaa(x, X ,  7) are defined by 

(1.18) 

where X is the separation between the two space points. The corresponding four- 
dimensional frequency wavenumber spectra are defined by 

cEsaa(x~ x, 7 )  = + iX, + 7, SE@(X-aX, t ) ] ,  

,. 

We note that since J(s)d3r = d3y, (1.16) obviously yields the usual relation between 
Lagrangian and Eulerian displacements. However, in order to implement that 
relation we must invert (1.17) with y = x to find r as a function of x and t .  I n  all but 
the most simple cases the inversion of (1.17) is intractable and, hence, (1.16) is not 
useful as an exact point relation between Lagrangian and Eulerian fields. On the 



A canonical statistical theory of oceanic internal waves 191 

other hand, if (1.16) is used in (1.18) and the phase-space density function given by 
(1.9) is used to compute the expectation value, then the need to invert (1.17) does not 
arise and tedious but entirely tractable calculations result. By using this procedure 
we can obtain expressions for the Eulerian correlation functions and spectra in terms 
of the Lagrangian spectra. 

I n  $ 2 we obtain expressions for the four-dimensional Lagrangian frequency 
wavenumber spectrum. In order to explore some of the details we consider a simple 
model for internal waves with a constant Vaisala profile and use periodic boundary 
conditions in the vertical as well as the horizontal. This results in correlation 
functions and spectra which are homogeneous in both the vertical and the horizon- 
tal directions. As an example, we find that the frequency wavenumber spectrum 
SLs33(k, o) associated with the vertical displacement (a = 1,2 corresponds to the 
horizontal directions and a = 3 corresponds to the vertical direction) is given by 

(1.20) 

where, because the system is homogeneous, we have suppressed display of the label 
r. In  (1.20) p is the fluid density, k, is the magnitude of the horizontal component of 
k ,  k is the magnitude of k ,  and we have allowed the volume of the ocean to become 
arbitrarily large so that the index j on SZ, and A, is replaced by the continuous three- 
dimensional wavevector k (we note that the Lagrangian wave action spectrum is 
then given by A,(k) = A(k)/SZ(k)). The delta functions in (1.20) confine the system 
to the dispersion surface described by Q(k)  so that the system is wavelike. The three- 
dimensional wavenumber spectrum is obtained from (1.20) as 

(1.21) 

and we find that the three-dimensional wavenumber spectrum is directly pro- 
portional to  the Lagrangian energy distribution A(k). 

The role of statistical mechanics is to  provide not only the form of the phase-space 
density function such as that given by (1.9), but also the Lagrangian energy 
distribution A(k) .  From a knowledge of the system interactions i t  is, in principle, 
possible to derive a specific expression for A(k) .  While our theoretical effort has not 
yet reached quite this level of maturity, it is an ultimate goal and certainly a 
direction for future efforts. Likewise, experimental efforts which measure the 
Lagrangian spectra, particularly wavenumber spectra, provide important infor- 
mation about the Lagrangian energy distribution A(k) and stand in symbiotic 
relation to the corresponding theoretical efforts. In  $3  we use the above outlined 
methods to calculate the four-dimensional Eulerian frequency wavenumber spectra 
and the corresponding three-dimensional Eulerian wavenumber spectra. We find 
that at small wavenumbers the Eulerian and Lagrangian spectra are approximately 
equal, but at large wavenumbers they are significantly different. At large 
wavenumbers the Eulerian spectra exhibit a power-law decay whose functional form 
is independent of A ( k )  and whose scaling depends only upon an integral involving 
A(k) .  This means that we do not need to know the precise details of A ( k )  in order to 
make reasonable estimates of the Eulerian spectra. On the other hand, this also 
means that experiments which measure the decaying part of the Eulerian 
wavenumber spectrum cannot provide the details of A(k)  and, hence, cannot provide 
detailed information about the true dynamics of the system. 
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While we cannot yet provide a rigorous derivation of A ( k ) ,  we can propose a 
plausible form whose important features are clearly related to physical processes. In  
$2 we propose the form 

(1.22) A ( k )  = E, exp { -&uE kE +p: k3}, 
where ph and pv are horizontal and vertical lengthscales a t  which the population of 
the linear modes is suppressed. We will argue that to an adequate approximation 
(1.22) describes a system a t  canonical equilibrium for which contributions from the 
nonlinear interactions from horizontal and vertical lengthscales larger than ph and pv 
are negligible, but for which contributions from the nonlinear interactions from 
horizontal and vertical lengthscales smaller than ph and pv are large. This corresponds 
to the linear energy being equipartitioned among the large-scale modes and 
suppressed at  small scales. It is clear that strong nonlinear contributions will cause 
the occupation of the corresponding modes to be suppressed, but the specific form of 
that suppression or cutoff is not clear. However, we will show that the Eulerian 
spectra and some of the marginal Lagrangian spectra are not sensitive to the specific 
form of the cutoff and that for this purpose the only important feature of (1.22) is the 
introduction of the lengthscales p,, and pv a t  which the contributions from small 
horizontal and vertical lengthscales are suppressed. The Gaussian form has been 
chosen for mathematical convenience only and any other choice which introduces 
lengthscale cutoffs will produce essentially the same results. Once the level E,  has 
been specified i t  should, in principle, be possible to  compute the lengthscales ph and 
pv from a knowledge of the nonlinear interactions. While this is an important 
problem for future investigation, i t  is beyond the scope of this paper. Instead, by 
treating the three parameters E,, ph, and pv as adjustable we obtain expressions for 
a wide variety of Eulerian spectra which are in striking agreement with experiment. 
These results along with a more detailed discussion are given in $4. 

In this paper we establish a clear theoretical relationship between the Lagrangian 
energy distribution A ( k )  and the observed Eulerian spectra. We also demonstrate 
that the observed spectra are consistent with the hypothesis that the ocean is a t  
canonical equilibrium with the modes which correspond to small horizontal and 
vertical lengthscales suppressed due to strong nonlinear interactions. If this 
hypothesis could be rigorously established, then i t  would provide a first-principles 
explanation for the GM model. Our efforts fall somewhat short of this for two 
reasons. First, we do not actually derive an expression for A ( k )  from a knowledge of 
the system interactions, but instead hypothesize a plausible form and demonstrate 
consistency. Secondly, the observed Eulerian spectra are quite insensitive to the 
details of A ( k )  so that a variety of other forms for A ( k )  will lead to  similar results. 
The important contribution of this paper is to  clarify the relationship between the 
observed Eulerian spectra and the fundamental dynamical processes which are most 
directly described in the Lagrangian frame. We bring into clear focus the important 
areas for theoretical study, namely the derivation of the Lagrangian energy 
distribution A ( k )  from a knowledge of the system interactions and establishing more 
rigorously that the effects of strong nonlinear interactions can be approximated by 
the phase-space density function given by (1.9) with A ( k )  given by (1.22) or some 
equivalent form. We also bring into clear focus the fact that experiments which 
measure the decaying part of the Eulerian wavenumber spectrum do not provide 
direct information about the important dynamical processes. A more detailed 
discussion of these points along with some suggestions for future efforts are given in 
the last section. 
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2. The Lagrangian spectra 
In this section we obtain expressions for the Lagrangian frequency wavenumber 

spectra and for several one-dimensional marginal spectra which correspond to 
typical experiments. We then discuss the relationship between these and the 
distribution of energy among the linear internal wave modes. Later it will be shown 
that, for certain reasonable choices of the parameters ph and p,, the one-dimensional 
marginal spectra which are associated with moored measurements are in excellent 
qualitative agreement with experiment. 

In this paper we shall make the Boussinesq approximation, that is we consider the 
fluid density p to be constant except for the purpose of computing the Vais818 profile 
which we will take to be the constant N .  We also neglect the horizontal component 
of the Earth's rotation and assume that the Coriolis vectorf, which is of magnitude 
f, is vertical (for a formulation of this problem in terms of Lagrangian variables see 
e.g. Tolstoy 1963). We will initially use periodic boundary conditions in the vertical 
as well as the horizontal. Later we will treat surface effects as the need arises. Under 
these conditions the expressions given by (1 .1)  and (1.2) can be explicitly written as 

where we have used a complex representation and altered the labelling system so 
that the number of degrees of freedom is now 2M+ 1. In  (2.1) and (2.2) the dispersion 
relation is given by 

V is the volume of the ocean, I, is a three-dimensional wavevector of magnitude l,, l,, 
is the horizontal component off,, ljh is the magnitude of fjh, t h  is a unit vector in the 
direction I,,, lj3 is the vertical component of I,, r3 is the vertical component of r ,  ?3 is 
a vertical unit vector, and the unit vector i j = f3 x lj,. The eigenfunctions &(r) are 
proportional to complex exponentials and, thus, the p j ( t )  and qj( t )  are also complex. 
The vertical component of 1, is given by a positive or negative integer times 2x/D 
where D is the depth of the ocean and the horizontal components of 1, are given by 
positive or negakive integers multiplied by 2z/AJ where A is the surface area of the 
ocean. For now we will consider the volume V of the ocean to be finite but will later 
allow it to become arbitrarily large. We shall designate the labelling system such that 
l+ = -1, and we must therefore require that 

and 

The specific coefficients in (2.1) and (2.2) have been chosen so that the quadratic 
part of the Hamiltonian is given by 

M M 2  

5--M 9-1 m=1 
H , ( P , ~ )  = z iQj[Pj~;+qj$+I = z C $Qjk;m+&mI, (2.6) 

where we have suppressed explicit display of the time and since the term for which 
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j = 0 corresponds to a uniform translation of the system i t  has been omitted from the 
second expression in (2.6). We note that because of the conditions given by (2.4) and 
(2.5) the displacement and momentum associated with a given negative value o f j  are 
not independent of those associated with the corresponding positive value of j. Thus 
the second expression of (2.6) has been written in terms of real independent 
displacements and the corresponding canonically conjugate momenta wherc qjl and 
qj2 are the real and imaginary parts of the complex displacement qj and likewise pi, 
and pi, are the real and imaginary parts of the complex momentum pi. By using the 
real independent displacements and momenta in (2.6) the phase-space density 
function given by (1.9) can be written as 

The expectation value of any function of the dynamical variables, say F(p, q ,  t ) ,  is 
given by M 2  

Q ,  t ) l =  F(P,  Q ,  t )  g(P, q )  n n dpjm dqjm. (2.8) s j=1 m=l 

By using (2.7) and (2.8) it is easy to show that 

These expressions can now be used to  compute the various Lagrangian spectra. 
In the following calculations we will have recurring need for the Cartesian 

components of (2.1) a t  both the times t and t+7.  We will also make the weak 
interaction approximation so that the short-time dependence is well approximated 
by (1.14) and (1.15). By using (1.14), (1.15) and (2.1) along with 

and 

we can write 

S , ( t ,  t + 7 )  = 

(2.12) 

(2.13) 

(2.14) 
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We can now use (2.14) to compute any of the various Lagrangian correlation 
functions. Since we have taken the Vaisala profile to be constant and are neglecting 
surface effects, these correlation functions and the corresponding spectra are 
homogeneous in the vertical as well as the horizontal. As an illustration we shall 
consider the correlation function associated with the vertical displacement which is 
denot,ed by CLs33(R,7). By using (1.12), (2.9)-(2.11), (2.14), and by allowing V to 
become arbitrarily large we find 

Then by using (1.13) and (2.15) we obtain 

(2.15) 

(2.16) 

for the full four-dimensional frequency wavenumber spectrum. The delta functions 
in (2.16) confine the system to the dispersion surface and the spectrum is, therefore, 
wavelike. The various marginal spectra can now be obtained from (2.16). For 
example, the three-dimensional wavenumber spectrum denoted by k q L S a 3 ( k )  is 
obtained by integrating (2.16) over all frequencies to obtain 

(2.17) 

We note that the spectrum given by (2.17) is directly proportional to the Lagrangian 
energy distribution A(k) .  

It is clear from (2.16) and (2.17) that the Lagrangian energy distribution A ( k )  
plays a crucial role in our description of the various Lagrangian spectra. It should in 
principle be possible to derive A(k)  from a knowledge of the system interactions. 
While this is an ultimate goal and important for a full understanding of the 
underlying physics, it  is beyond our present capabilities. We can, however, determine 
some qualitative features of A(k)  and show that this is sufficient to gain a t  least a 
partial understanding of the observed spectra. Our treatment in this paper has made 
important use of the weak interaction approximation both through the use of (1.14) 
and (1.15) for short-time evolution and through the use of (2.7) for the phase-space 
density function. We now need to consider in more detail the conditions for the 
validity of the weak interaction approximation. The Hamiltonian given by (1.3) can 
also be written in the form 

H ( P ,  4 )  = T(P> 4 )  + V P ,  Q),  (2.18) 

where T(p,q)  is the kinetic energy and V ( p , q )  is the full potential energy. The 
potential energy can be written in the form 

r 
(2.19) 

where Vo(p,g) is the quadratic part of the potential energy and U ( p , q , r )  is the full 
potential energy density. It is important to realize that U(p ,  q, r )  is a density in terms 
of the Lagrangian label r and must be expressed in terms of Lagrangian variables. 
It can be shown that the potential energy density for a vertically stratified 
compressible fluid is given by 
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where we have assumed that expansion and compression of the fluid takes place 
adiabatically. In  (2.20) we have suppressed the display of the dynamical variables 
( p , ~ ) ,  P ( z )  is the static pressure at the vertical position z, and y is the ratio of the 
specific heat a t  constant pressure to the specific heat at constant volume. We note 
that in the static or undisturbed condition sL = 0 so that the Lagrangian label r and 
the Eulerian label x are equal and z = r3 = x3 is the vertical component of either the 
Lagrangian or the Eulerian label. 

The form of the interaction potential required in (1.3) is obtained by expanding the 
term P(z+s,,) in (2.20) about sL3 = 0 and the term l/[J(s,)]Y-l about J(sL) = 1. The 
quadratic terms are included in Vg(p,q) while the cubic and higher-order terms 
comprise the interaction potential V,(p,  q). By making the above expansion the 
quadratic part of the potential energy density U, is found to be given by 

u, = $p(Z){[N2(2) +g"c"z)] si3+c2(z)  [v*s,]2-2gsL3v'sL), 

where p(x) is the static fluid density, N(x) is the Vaisala profile defined by 

g is the acceleration due to gravity, c ( z )  is the speed of sound defined by 

and we have used the fundamental law of hydrostatics which is given by 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

We note that the expression for U,  given by (2.21) is the same as that obtained by 
Tolstoy (1963). In  order that these expansions converge we must limit both the size 
of the vertical component of the displacement and the size of the various spatial 
derivatives of all components of the displacement. For non-compressional gravity 
waves V-s ,  is of order l /c2(z) ,  which may be considered small, but other combinations 
of spatial derivatives are not so constrained. In  order to satisfy these limitations we 
must limit not only the average energy per mode but also the modal bandwidth. If 
the modes are occupied out to  arbitrarily small lengthscales, then both the free-field 
energy and the nonlinear contributions from the interaction potential will be 
arbitrarily large. It can be shown that the nonlinear energy grows much more rapidly 
as a function of decreasing lengthscale than does the free-field or linear energy. Thus, 
strong nonlinear interactions will ultimately limit the participation of small 
lengthscales. 

The above class of interactions will be referred to as internal interactions since they 
are present even when the system is isolated. Interactions with the outside world, 
such as those associated with sources and sinks of energy, will be referred to as 
external interactions. We shall consider a hierarchy of three cases which correspond 
to progressively greater levels of excitation as well as different relative strengths of 
the internal and external interactions. The first case, which is the most simple and 
best known, is that for which the external interactions are negligible (i.e. the input 
and dissipation of energy is negligible) and the level of excitation is small cnough to 
consider all internal nonlinear interactions as weak. In this case energy is 
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redistributed aniong the linear modes by weak internal interactions until the system 
reaches canonical equilibrium where energy is equipartitioned across the accessible 
modes. In order to limit the modal band width we shall consider that molecular 
viscosity provides an absolute lower bound to the participation of the small-scale 
modes. While we will find, for internal waves, that processes other than molecular 
viscosity are more important for limiting the participation of the small-scale modes, 
i t  still provides an absolute lower bound and a useful base line for comparison to  the 
other two cases. The second case is that for which the timescales associated with 
external interactions (i.e. energy input and dissipation) are comparable to or shorter 
than those associated with internal interactions and the level of excitation, while 
greater than for the first case, is still small enough to treat the internal interactions 
as weak. The third case is that for which the internal interactions dominate so that 
the timescales associated with internal interactions are shorter than those associated 
with external interactions and are important at lengthscales which are much greater 
than those associated with molecular viscosity. We shall now consider these three 
cases in greater detail. 

We will find it convenient to write the average energy per mode in the form 

A j  = E,  hj,  (2 .25 )  

where E ,  is the maximum average energy per mode and hi is a dimensionless 
(convergence) factor which provides the structure of the modal occupation and more 
importantly cuts off the participation of the modes which correspond to small 
lengthscales. In geophysical fluids, such as the ocean, molecular viscosity provides a 
fundamental basis for excluding the small-scale modes. In a typical situation the 
modes which correspond to lengthscales shorter than about a millimetre are strongly 
damped and are, thus, ineffective for storing energy. We can, therefore, think of a 
minimum lower bound ,urn (i.e. ,urn is on the order of 1 mm) for the lengthscale cutoff 
provided by molecular viscosity. If, for example, we consider a system for which the 
internal interactions dominate, then we would expect the system to evolve near to 
canonical equilibrium so that the phase-space density function is given by (2.7) with 
A,  = E, and with the number of degrees of freedom limited to lengthscales greater 
than y, by molecular viscosity. In  this case the convergence factor hi is unity for 
modes which correspond to lengthscales greater than y, and then decreases rapidly 
to zero for modes which correspond to lengthscales smaller than ,urn. We must 
restrict E,  to be small enough to assure that the nonlinear contributions are 
negligible, but if this condition is met, then (2.7) can be used for the calculation of 
statistical averages. We shall refer to this scenario as case I. 

The second case to be considered involves external interactions. While the 
Prigogine (1962) formulation is for an isolated system, there exist other treatments 
that  allow the inclusion of additional degrees of freedom which can be used to 
represent generation and dissipation mechanisms. For example, Mori (1965) has cast 
the problem in the form of a generalized Langevin equation which can be used for 
this purpose. The application of Langevin methods to the oceanic internal wave 
system has been considered by Pomphrey, Meiss & Watson (1980) who argue that the 
GM spectrum corresponds to a minimum in the energy transfer rates. Unfortunately, 
these, as well as other oceanographic studies (Pomphrey 1981 ; Holloway 1981), have 
not in general resulted in an improved understanding of the role of generation and 
dissipation mechanisms. Indeed, it seems clear that  the reason for this is that none 
of these studies has introduced a model for generation and dissipation which is 
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sufficiently detailed to have been able to provide such an improved understanding. 
This shortcoming has been partially addressed by West (1982) who considers a set of 
test waves which interact among themselves and with an additional set of waves 
which are referred to as a heat bath. The term ‘heat bath’ simply means that the 
additional set of waves is large in comparison to the set of test waves so that it can 
be considered to be a reservoir which supplies energy to or absorbs energy from the 
test waves without being significantly affected by them. West obtains a generalized 
Langevin equation, the associated Fokker-Planck equation, and shows that the 
steady-state solution for the distribution of test waves depends upon the assumed 
distribution of heat-bath waves. Specifically it is shown that the steady- state phase- 
space density function for the distribution of the canonically conjugate test-wave 
variables is given by 

M 2  

S(P>!l) = (l/Z)exp{ - j-1 c m = l  c [ ( ~ ~ , ) ( l ’ f + ~ ~ ~ ) + ~ l , ( P r u ) l / n , } ,  (2.26) 

where the interaction potential has been written in the form 

(2 .27)  

and A, in general depends upon the distribution of heat-bath variables. 
Prigogine & Henin (1957, 1960) have considered the case of strong nonlinear 

interactions in isolated systems. They obtain a generalized master equation and show 
that its long-time solutions correspond to canonical equilibrium. In this case the 
phase-space density function is given by (2.26) with A j  = E,  so that the average 
energy of the j t h  mode is independent of the mode index but in general the 
interaction potential must also be included. Thus, (2.26) can be viewed as a 
generalization of canonical equilibrium which includes the possibility of interactions 
with a generalized heat bath as well as the possibility of strong nonlinear internal 
interactions. In all realistic situations both types of interactions are present. The 
crucial issue is which of the two types of interaction dominates the time evolution of 
the phase-space density function. If internal interactions dominate, then we would 
expect the phase-space density function to evolve near to  the canonical distribution 
(i.e. (2.26) with Ai = ,To). Ifexternal interactions dominate, then we would expect the 
more general distribution given by (2.26) with A, determined by the heat bath. We 
point out here that the inclusion of external interactions does not preclude the 
possibility of obtaining the canonical distribution. While it is never explicitly stated 
by West (1982), it is clear from his results (see his equation (3.18)) that if the heat- 
bath waves are distributed in accordance with the canonical distribution, then the 
test waves are also distributed in accordance with the canonical distribution. Thus 
we may view the canonical distribution as a special case of (2.26) which is obtained 
if either the external interactions are negligible in comparison to the internal 
interactions of if the heat bath is distributed in accordance with the canonical 
distribution. 

If we now consider a system for which external interactions dominate, then we 
would expect the phase-space density function given by (2.26) where A j  must be such 
that the modes excluded by molecular viscosity are not populated but otherwise it 
is determined by the heat bath (i.e. energy input and dissipation). In  this case the 
heat bath provides the lengthscale cutoffs p,, and p,. We point out here that our use 



A canonicul statistical theory of oceanic internal waves 199 

of the word cutoff does not necessarily imply an abrupt cutoff. For example, the 
convergence factor hj might be such that it exhibits a strong power-law decay for 
modes which correspond to horizontal lengthscales smaller than ,uh and vertical 
lengthscales smaller than pv. We shall find it convenient to introduce a new 
horizontal lengthscale vh and vertical lengthscale v, which are equal to the root- 
mean-square (r.m.s.) horizontal Lagrangian displacement and the r.m.s. vertical 
Lagrangian displacement, respectively. We will find that these r.m.s. lengthscales 
play an important role in the development of the Eulerian spectra and therefore refer 
to them as Eulerian lengthscales. It can be shown that vh and v, are given by 

(2.28) 

where the factors of proportionality are of order unity. The first expression of (2.28) 
follows from equipartitioning energy out to the lengthscale ,u, in a vertically 
stratified fluid, while the second expression depends upon the relation between the 
vertical and horizontal components of the linear internal wave eigenfunctions. Both 
expressions are derived in Appendix A. It is also shown in Appendix A that the ratios 
vh/ph M vv/,uv must be limited for the weak interaction approximation to be valid. If 
these conditions are met, then (2.26) can be replaced by (2.7) for the calculation of 
statistical averages. It is this scenario which has been proposed by McComas & 
Miiller (1981). Thus, i t  is assumed that generation and dissipation mechanisms 
provide a heat bath which establishes the convergence factor h, such that the GM 
action spectrum is obtained. However, such a proposal simply transfers our lack of 
understanding to the heat bath, the detailed nature of which must eventually be 
explained. In the case of oceanic internal waves the precise details of generation and 
dissipation mechanisms are not completely known, but what is known does not seem 
to lead to an explanation for the quasi-universal character of the GM spectrum 
(Holloway 1986). Further, existing estimates of the evolution rates due to internal 
and external interactions seem to suggest that  a t  most lengthscales of interest the 
internal interaction rates are much larger than the external interaction rates. While 
this proposal has some attractive features there are also some important unresolved 
issues. We shall refer to this scenario as case 11. 

A third scenario which is the most intriguing is also the most speculative. We now 
consider a system which is near canonical equilibrium but for which we cannot make 
the weak-interaction approximation. The phase-space density function is given by 
(2.26) with A, = E, but in general the interaction potential cannot be neglected. In 
this case the exact expression given by (2.26) is usually not tractable. In  Appendix 
A it  is shown that for a given amplitude of displacement the modes which correspond 
to  small lengthscales contribute much more strongly to the nonlinear interaction 
energy than do the modes which correspond to larger lengthscales. Thus, realizations 
of the system for which the small lengthscales are significantly populated are more 
energetic than realizations for which large lengthscales are correspondingly 
populated, and due to the form of the phase-space density function given by (2.26) 
are much less likely to occur. In  this case the form of the phase space density function 
provides a basis for the exclusion of the small-scale modes. We can approximate 
(2.26) by (2.7) if we choose A, such that A, = E,  for modes which correspond to 
horizontal lengthscales larger than ph and vertical lengthscales larger than pv and 
then decreases rapidly to  zero for smaller lengthscales. 
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To illustrate this we note that the argument of the exponential factor in (2.26) can 
be written as 

where 

We can now define an effective energy for t,he j t h  mode ijm(p, q )  such that, 

(2.30) 

(2.31) 

and write the phase-space density function in a form which looks similar to (2.7). 
There is, however, an important difference between Alrn(p, q )  and the average energy 
of thejth mode, A?, in (2.7). The parameter A, does not depend upon the p lm and qjm, 
while k l m ( p , q )  does. Obviously (2.26) is in general non-Gaussian and no amount of 
manipulation can change this. However, if the nonlinear interaction energy 
associated with a given mode is small relative to the free-field energy associated with 
that mode, then (2.31) yields approximately the constant E,. On the other hand, if 
the nonlinear interaction energy associated with a given mode is much larger than 
the free-field energy associated with that mode, then (2.31) yields a result much 
smaller than E,  and because of the form of (2.26) these modes are much less likely 
to be occupied. We have approximated this situation by replaving (2.31) by an 
average value and assumed that the average rapidly approaches zero for lengthscales 
which are smaller than p,, or pv. Such an approximation is qualitatively reasonable, 
but cannot be expected to provide detailed quantitative information about the 
exclusion of the small-scale modes. If it  were our goal to obtain precise information 
about the three-dimensional Lagrangian wavenumber spectrum which is direct) y 
proportional to A(k) ,  then this would be a serious shortcoming. However, we will find 
that the various Eulerian spectra as well as the marginal Lagrangian spectra 
associated with moored measurements are not sensitive to  these details and, 
therefore, this approximation is adequate for our  purposes here. The Eulerian 
lengthscales given by (2.28) also play an important role in this scenario and we must 
require that the ratios vh/ph z v,/p, be limited in order to neglect the interaction 
potential in the region for which (2.31) is approximately equal to Eo. If these 
conditions are met, then (2.7) can be used for the calculation of statistical averages. 
We shall refer to this scenario as case 111. The cutoff proposed in case 111 is 
equivalent to arguments concerning the breakdown of internal waves due to local 
instabilities a t  small Richardson number (Phillips 1969). 

The one-dimensional Lagrangian frequency spectrum flLSa3(w) is defined as an 
integral of the four-dimensional Lagrangian frequency wavenumber spectrum over 
all wavenumbers. By using (2.16) we can write 

(2.32) 
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If we now assume that A ( k )  is isotropic in the horizontal, then two of the integrals 
in (2.32) can be evaluated. By using (2.3) to write 

(2.33) 

the integral over k3 in (2.32) can be transformed to an integral over l2 and by using 
polar coordinates in the horizontal we find 

It is clear from (2.34) that this frequency spectrum is not sensitive to the details of 
A ( k ) .  To see this we write 

A(k)  = E,h(k) = E,h((&ki+&k$),  (2.35) 

where h(x) is any function which exhibits reasonable convergence properties at large 
x. By using (2.35) in (2.34) and making the change of variables 

(2.36) 

we find 

The integral in (2.37) is insensitive to the details of the convergence factor h(k).  
Other than to provide convergence h(k)  affects only the overall scaling and then only 
in terms of its second moment. We will find that most other spectra which are 
normally compared to experiment (these are mostly Eulerian) also exhibit a weak 
dependence upon the details of the convergence factor (i.e. dependence upon low- 
order moments). For practical purposes it matters little if h(k) provides convergence 
by inverse power law, exponential, Gaussian, or infinitely many other forms. If we 
were able to  measure the Lagrangian wavenumber spectrum given by (2.17), then we 
would have a direct measure of the convergence factor h(k). However, as we will see 
later, none of the usual experiments accomplishes this and for our purposes here i t  
makes no difference how h(k)  is chosen. In  this paper we will choose 

h(k) = exp { -&u: ki +& k 3 ,  (2.38) 

which results in the value (in); for the integral in (2.37). This choice is for 
mathematical convenience only and many other choices will yield entirely similar 
results. 

The expression for the one-dimensional frequency spectrum given by (2.37) 
exhibits excellent qualitative agreement with experiment. If pv Q ph (this is a 
reasonable requirement), then for most frequencies (2.37) exhibits the characteristic 
1/w2 frequency dependence observed in experiments. Near the inertial frequency the 
spectrum given by (2.37) rises to a peak and then decreases rapidly to zero as w 
approaches f from above. This behaviour is also consistent with experiment. As w 
approaches N from below (2.37) exhibits an integrable singularity. While this differs 
somewhat from experiment, we will show that by using fixed-surface boundary 
conditions this singularity is converted into a bump which is similar to what which 
is observed experimentally. 



202 K .  R.  Allen and R .  I .  Joseph 

The most appropriate boundary conditions are that the sea floor is rigid and the 
air-sea interface is free. The free-surface boundary condition leads to a tran- 
scendental equation for the internal wave dispersion relation and is not convenient 
for our purposes here. By using instead a rigid-surface boundary condition, we loose 
the surface wave mode but obtain an  excellent approximation to  the internal wave 
modes. If we use a fixed-surface boundary condition we obtain in place of (2.14) for 
the Lagrangian displacement 

(2.39) 

We can now use (2.39) to compute any of the various Lagrangian correlation 
functions. As an illustration we shall consider the correlation function associated 
with the vertical displacement which is denoted by CLs33(r, R ,7 ) .  By using (1.12), 
(2.7)-(2.11), and (2.39) we find 

where in the last line of (2.40) we have taken the limit that  V becomes arbitrarily 
large. We note that, since the second term within the bracket in (2 .40)  is proportional 
t,o the cos (21, r , ) ,  this correlation function is not homogeneous in the vertical. In the 
GM model, as well as most other oceanographic studies, this inhomogencous term is 
neglected. However, there are some interesting features associated with this term so 
for now i t  will be retained. 

All of t'he marginal spectra associated with moored measurements of the vertical 
displacement can be obtained from the moored cross spectrum MCSLS33(r, R, w) which 
is defined as the temporal Fourier transform of (2.40). By using (2.40) we find 

(2.41) 
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where J,(x) is a Bessel function of zero order. In  the second expression of (2.41) we 
have written the horizontal component of the wavevector in polar coordinates, 
assumed that the convergence factor is independent of the polar angle, and 
integrated over it. In the third expression of (2.41) we have used (2.33) to transform 
the integral over 1, to an integral over SZ, and then evaluated the integral. 

We shall illustrate these results by considering the moored vertical displacement 
autospectrum denoted by SLs3,(r3, w ) ,  the moored vertical velocity autospectrum 
denoted by flLv3,(r3, w ) ,  and the moored vertical coherence denoted by MVCLs3,(R3, 
T,, w ) .  The moored vertical displacement autospectrum is obtained from (2.41) by 
setting R, = R, = 0 and using (2.38) to obtain 

where 

The moored vertical velocity autospectrum is easily obtained from (2.42) by noting 
that 

flLV33(T3> w )  = w2&s33(r3, 0). (2.44) 

Finally, the moored vertical coherence is defined as the ratio of the magnitude of the 
moored cross spectrum between two points separated by the vertical distance R, to 
the moored autospectrum. It is easily shown to be given by 

(2.45) 

A comparison between these expressions and experiment will be given in the fourth 
section where excellent qualitative agreement is obtained. 

3. The Eulerian spectra 
The definition of an Eulerian variable as a weighted average of the corresponding 

Lagrangian variable was introduced in (1.16), If FL(r,t) is a Lagrangian variable, 
then the corresponding Eulerian variable PE(x,  t )  is given by 

FE(x,  t )  = d3rFL(r, t )  W ( x ,  r ,  t ) ,  (3.1) 

(3.2) 

s 

(27C)3 ‘i 

where the weighting function W ( x ,  r ,  t )  is given by 

W ( x ,  r ,  t )  = S ( x - y )  J ( s ) .  
The delta function in (3.2) can be expressed in terms of its Fourier transform such 
that 

6 ( x - y )  = - dam exp {im - ( x - y ) } .  (3.3) 

By using (3.1) we can in principle compute any Eulerian quantity from the 
corresponding Lagrangian quantity. If the phase-space density function is given by 
(1.15), then exact expressions for the four-dimensional frequency wavenumber 
spectra associated with the Eulerian variables defined by (3.1) can always be 
obtained. 
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While the procedure we will use is straightforward, it often results in tedious 
calculations and it is helpful to make use of a compact notation. If we use (3.1)-(3.3) 
to obtain an expression for the Eulerian variable, then the complicating factors in 
that expression are the Jacobian determinant and the part of the complex 
exponential which depends upon the displacement. By making use of the perfectly 
antisymmetric tensor of the third rank espy we can write 

where E,  = exp{-im,[r,+sL,(r,t)]} (1  < a  < 3). (3.5) 
Then by using (3.1)-(3.5) the expression for the Eulerian variable can be written 

(3.6) 

The product of the last three factors in (3.6) contains terms which are up to cubic 
order in the spatial derivatives of the displacements as well as a complex exponential 
factor which is a function of the displacement. If we integrate (3.6) by parts with 
respect to ra, we will reduce by one the number of factors which contain spatial 
derivatives of the displacement and this results in a considerable simplification of the 
following statistical calculations. Thus, by integrating (3.6) by parts we obtain 

where we have also used (3.5). 

by using (3.7) and the properties 
For our purposes in this paper we shall consider the vertical displacement which 

can be written 

The two space point two time Eulerian correlation function associated with vertical 
displacement can now be found by using (3.8) to  obtain 

1 - - -!.- 1d3R Jd3m2eap {irn- (X- R))M3,(R, rn, T ) ,  (3.9) 
(2xI3 
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where 

J 

r = t - t ’ ,  and R = r -r ’ .  In  obtaining (3.9) we have again used periodic boundary 
conditions in the vertical as well as the horizontal, used the property (shown in 
Appendix B) that (3.10) is spatially homogeneous, transformed to the variables R 
and R‘ = i (r+r’) ,  and evaluated the integral over R’ to obtain a delta function 
6(m-m’) which results in a considerable simplification. Finally, by taking the four- 
dimensional Fourier transform of (3.9) the four-dimensional Eulerian frequency 
wavenumber spectrum S,,,,(k, w) is found to be 

dr C,,,,(X, r )  exp{ -i(k.X--wr)} 

= [d3R l d ~ M , ~ (  R ,  k, 7) exp { - i(k - R - w7)). (3.1 1)  
k: 

The expression for the frequency wavenumber spectrum given by (3.11) is a central 
result of this paper. Its practical utility, however, depends upon obtaining a 
tractable expression for the function M,,(R,k,r) defined by (3.10). By using the 
procedure described in Appendix B an exact expression for M3,(R, k, 7) is obtained. 
The calculations given in Appendix B are tedious and the final expression forM,,(R, 
k ,  r )  is complicated. Fortunately, it is not necessary to cxamine all of the details of 
that result in order to discuss the important features of the Eulerian spectra. The 
form of the expression for M,,(R, k,  r )  obtained in Appendix B is given by 

M , , ( R  k, 7 )  = G,,(R, k, 7) exp{ - C C k,D,p(R, 7) Icg} , (3.12) 

where Da,(R, 7) = CLsap(O, 0) - CLsap(R> r ) ,  (3.13) 

and an exact expression for G,,(R, k,  7) is given. The expression for G,,(R, k ,  7) 
involves products of spatial derivatives of the Lagrangian correlation functions 
C,,(R, 7) .  While this expression is complicated, containing terms which involve 
products of up to  four Lagrangian correlation functions, subsequent calculations, 
albeit tedious, are tractable. For the most part we shall relegate these calculations 
to Appendix C and simply discuss the important results in this section. 

We note that the exponential factor in (3.12), which is of a Gaussian form in the 
k,, plays an important role in determining the wavenumber dependence of the 
spectrum. For small wavenumbers the Gaussian factor can be expanded in powers of 
the k,, while for large wavenumbers an asymptotic expansion in powers of the 
reciprocals of the k, is required. It can be shown that the double sum in the 
exponential factor in (3.12) is positive definite and bounded such that 

3 3  

a = l  p=1 

3 3  3 

C C kaDap(R,7)k,j < 2 C k~CLsaa(O,O) = 2 ( v E k E + ~ : k g ) ,  (3.14) 
a=l p=1 a=l 
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where 

and 

(3.15) 

(3.16) 

The parameters v,, and v, are the r.m.s. horizontal and vertical Lagrangian 
displacements which in the second section were referred to as Eulerian lengthscales. 
Explicit expressions for u,, and v, are given in Appendix A. If all of the k,  are small 
enough to assure that the expression given by (3.14) is somewhat less than unity. 
then the exponential factor in (3.12) can be expanded in powers of thc k,. By using 
(3.11), (3.12). the lead term in the expression for G3,(R,k,7) given in Appendix B. 
and the above mentioned expansion it can be shown that 

XES33(k> 0 )  x S,S,,(k> w ) .  (3.17) 

We thus find that,  for wavenumbers which are small enough to assure that the right- 
hand side of (3.14) is somewhat less than unity, the Eulerian and Lagrangian 
frequency wavenumber spectra are approximately equal. 

There is a correction to (3.17), also of order kg, which may not bc completely 
negligible. This correction tcrm arises from terms in thc expression for G',,(R, k ,  7 )  

which involve products of two Lagrangian correlation functions. This will lead to 
corrections to the Eulerian frequency wavenumber spectrum given by (3.17) which 
are in the  form of a convolution of two Lagrangian frequency wavenumber spoctra, 
and hence permit frequencies which do not satisfy the dispersion relation. For 
example, in the calculation of the moored spectra these corrections will lead to non- 
zero values for the spectrum above the Vaisala cutoff, and thus tend to smear the 
sharp cutoff at N obtained in the last section. While these correction terms are 
interesting and perhaps make some important contributions, they arc for future 
investigation and will not be considered further in this paper. 

The opposite extreme is the case for which at  least one of the k, is large enough to 
assure that 

(3.18) 

In this case the exponential factor in (3.12) limits contributions to the integral in 
(3.11) to come from small values of both R and 7 for which the Da,,(R,7) are small. 
In Appendix C a n  expansion for the Eulerian frequency wavenumber spectrum in 
powers of the reciprocals of the appropriate large ka is obtained and it is shown that 

wherc yh and are constants whose values are given in Appendix C, 

and we have used (3.11). Recall that  when (3.20) is used in (3.19) at least one of the 
k, must be large enough to assure that  (3.18) is satisfied. In  general the three- 
dimensional Eulerian wavenumber spectrum given by (3.20) corresponds to the 
three-dimensional Lagrangian wavenumber spectrum given by (2.17). I t  is also 
shown in Appendix C that  if (3.18) is satisfied, then 

(3.21) 

where f is a unit vector in  the direction of k. By using (3.21) in (3.19) we find that 
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if (3.18) is satisfied, then the four-dimensional Eulerian frequency wavenumber 
spectrum decays as 1 / k 6 .  Further, unlike the corresponding Lagrangian frequency 
wavenumber spectrum given by (2.16), t h e  Eulerian frequency wavenumber 
spectrum is not proportional to the delta functions which confine the system to the 
dispersion surface. Thus, from an Eulerian frame point of view, at large wavenumbers 
the dispersion surface is completely smeared and the system is not wavelike. 

We have found that at small wavenumbers, for which the inequality in (3.18) 
is reversed, the Eulerian and Lagrangian frequency wavenumber spectra are 
approximately equal. At larger wavenumbers, for which (3.18) is satisfied, the 
Eulerian frequency wavenumber spectrum decays as 1 /k6, while the Lagrangian 
frequency wavenumber spectrum decays as the convergence factor h(k). We note 
that both (3.19) and (3.21) are independent of the detailed nature of h(k) .  Thus, while 
the Lagrangian spectra (see (2.16) and (2.17)) are directly sensitive to the details of 
h(k) ,  the corresponding Eulerian spectra are not. 

Some of the one-dimensional marginal spectra, such as the frequency spectra and 
moored coherences discussed in the last section, are obtained by integrating over all 
wavenumbers. In the case of both Lagrangian and Eulerian spectra such integrals are 
dominated by contributions from small k, where the Eulerian and Lagrangian 
frequency wavenumber spectra are approximately equal. In the case of Eulerian 
spectra the l / k 6  decay simply provides a large wavenumber cutoff a t  approximately 
the surface defined by 

(v: k: + v', k i )  = 1 .  (3.22) 

In the case of Lagrangian spectra the Lagrangian convergence factor h(k) provides 
a large wavenumber cutoff at approximately the surface defined by 

(p: k: +,NU', k t )  = 1 .  (3.23) 

For both case I and case II v,, < y,, and v, < y, so that the Lagrangian convergence 
factor controls the cutoff for both Lagrangian and Eulerian spectra. For case 111 it 
will be shown in the next section that vh z ph and v, x y, so that the surfaces defined 
by (3.22) and (3.23) are approximately the same. Hcnce, for all of the above 
three cases the one-dimensional Eulerian frequency spectra and ooherences are 
approximately equal to the corresponding Lagrangian spectra. 

The horizontal tow spectrum, on the other hand, is an Eulerian spectrum and 
presents a different situation. It can be obtained from the three-dimensional 
wavenumber spectrum given by (3.20) by setting k, = K and integrating over k2 and 
k, .  For small K such that the product K V ~  is somewhat less than unity the integrals 
are dominated by small values of k,  and k, so that the Eulerian tow spectrum is 
approximately equal to the one-dimensional Lagrangian horizontal wavenumber 
spectrum. The one-dimensional Lagrangian wavenumber or tow spectrum HTS,,,,(K) 
is found by using (2.17) and (2.38) to write 

(3.24) 

The spectrum given by (3.24) is white for small K and transitions to a Gaussian decay 
a t  large K. This Gaussian decay is completely due to the form of h(k) and is not 
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meaningful. The white spectrum a t  small K is of interest and the level is found by 
evaluating (3.24) a t  h = 0 to obtain 

HTSEs33(~  = 0) % HTS,,,,(K = 0) = EO (3.25) 
2 V P i  W( 1 + NP"/fPh ) ' 

For larger K such that the product K V ~  is somewhat larger than unity the  expression 
given by (3.21) is kppropriate and a significant'ly different result is obtained. By 
setting k, = K ;  k2 = K&, and k, = K [ ~  and by using (3.21) i t  is straightforward to show 
that 

where an expression for W which depcnds upon N ,  f, E,, ph, and pv is given in 
Appendix C .  We have thus found that the one-dimensional Eulerian horizont,al tow 
spectrum is white a t  small K and transitions to a K-, a t  large K .  In the fourth section 
we shall present a comparison of these results to experiment and show that the 
agreement is excellent. 

As a final example of Eulerian tow spectra, we now consider the vertical tow or 
drop spectrum VTSEs33(~). This spectrum is found from (3.20) by setting k3 = i and 
integrating over k, and k,. Again we find that if L is small such that iv, is somewhat 
less than unity, then the Eulerian and Lagrangian spectra are approximately equal. 
In this case we can use (2.17) and (2.38) to write 

It is only small values of 6 for which (3.27) is appropriate and there the spectrum is 
white a t  the level 

Eo 
2npPp:, . VTSEs3,(i = 0) x VTS,,,,(i = 0) = (3.28) 

It is shown in Appendix C that if the product LV, is somewhat larger than unity, then 

(3.29) 

where an expression for w which depends upon N ,  f ,  E,, p h ,  and pv is also given in 
Appendix C. We have thus found that the vertical Eulerian tow spectrum is white 
a t  small L and transitions to an r3 decay a t  large L .  In the fourth section these result's 
are compared to experiment and excellent qualitative agreement is obtained. 

4. Discussion 
We have obtained expressions for the four-dimensional Eulerian frequency 

wavenumber spectra which are given in terms of the various four-dimensional 
Lagrangian frequency wavenumber spectra (we have illustrated this for vertical 
displacement but it is clear that any other of the various Eulerian spectra can also 
be obtained). These expressions establish a clear relationship between the observed 
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FIGURE 1.  A comparison between the results of the canonical theory and experiment for a 
typical moored vertical displacement spectrum. 

Eulerian spectra and the fundamental Lagrangian quantities usually studied in 
statistical mechanics. At small wavenumbers the Eulerian and Lagrangian spectra 
are approximately equal, but a t  large wavenumbers they are significantly different. 
We now turn to a comparison of our theoretical results to  experiment. 

We shall first consider the case of the moored spectra which will be compared to 
the Lagrangian frequency spectra and coherencies computed in $2. While the 
measured spectra in some experiments are in terms of Lagrangian variables and in 
other experiments in terms of Eulerian variables, we have shown that for moored 
measurements the two types of spectra are approximately equal. Thus, the following 
comparison is appropriate regardless of the type of measurement being considered. 
We emphasize that for now we are only seeking to establish general qualitative 
agreement, In the following comparison the values of N and f are chosen to 
correspond to the particular experiment under consideration and we will simply 
adjust the parameters E,, ph, and pv in order to obtain a reasonable comparison. We 
will show later that the assumed values for these parameters are consistent with the 
scenario referred to as case 111. I n  figure 1 the solid curve is a plot of the moored 
vertical displacement spectrum given by (2.42) where for the purpose of this plot we 
have chosen E , / p  = 1.2 x lo5 J m3/kg, p,, = 700 m, p, = 7 m, r3 = 350 m, N = 3.2 
c.p.h., and f = 0.035 c.p.h. The dashed curve in figure 1 is a reproduction of a curve 
given by Cairns & Williams (1976). The Cairns & Williams result corresponds to a 
moored experiment conducted a t  a depth of approximately 350 m in a location 
approximately 800 km off shore of San Diego, California and is typical of moored 
experiments. The excellent qualitative agreement is obvious. 

In  figure 2 the solid curve is a plot of the moored vertical velocity spectrum given 
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FIGURE 2 .  A comparison between the results of the canonical theory and experiment for a 
typical moored vertical velocity spectrum. 
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FIGURE 3. A comparison between the results of the canonical theory and experiment for a 
typical example of moored vertical coherence. 
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by (2.44) where for the purpose of this plot we have chosen E , / p  = 4.2 x lo4 J m3/kg, 
p,, = 400 m, pv = 4 m, r 3  = 200 m, N = 5.0 c.p.h., and f = 0.070 c.p.h. The dashed 
curve in figure 2 is a reproduction (which includes a change in length units from cm 
to m) of a curve given by Pinkel (1981). The Pinkel result corresponds to a moored 
experiment conducted a t  a depth of approximately 200m, and is also typical of 
moored measurements. The excellent qualitative agreement is again obvious, I n  
figure 3 the solid curve is a plot of the moored vertical coherence given by (2.45) 
where the vertical separation is 40 m and the other parameters are the same as in 
figure 2. The dashed curve in figure 3 is also a reproduction of a curve given by Pinkel 
(1981) for which the vertical separation was 36 m. The four vertical arrows in figure 
3 indicate the frequencies of the semidiurnal tide and its first three harmonics so that 
there seems to be considerable tidal contamination at the lower frequencies. Again 
the excellent qualitative agreement is apparent. 

There are a number of other moored spectra and coherences, such as the moored 
horizontal velocity autospectrum and the moored horizontal coherence, which are 
easily computed but we shall not present these results here. The calculations are 
entirely similar to the above and the results are in equally good agreement with 
experiment. We emphasize again that we are only seeking to establish general 
qualitative agreement. However, we would like to demonstrate that the values 
chosen for the various parameters are a t  least reasonable. While the two sets of 
values for the parameters E,, ,uh, and y, are not identical, they are certainly similar. 
For example, the values for the overall energy scaling parameter E,  are well within 
the range of variability observed in experiments. The lengthscales y,, and p, are used 
in conjunction with wavenumbers (i.e. are in radian measure) and, therefore, 
correspond to wavelengths which are greater by the factor 2z. Since we have used the 
constant N model for the vertical eigenfunctions, some distortion of vertical 
distances is likely and the above values should be taken only as rough estimates. 
Nevertheless, the above lengthscales are roughly the same as those for which 
Holloway (1980, 1982) argues that the weak interaction approximation breaks down. 
Further, i t  is shown in Appendix A that the values for these lengthscales as well as 
the overall scale factor E,  are consistent with the scenario referred to  as case 111. This 
issue will be discussed in greater detail later in this section. 

We shall now consider some examples of tow spectra. The tow spectra are always 
Eulerian and mostly a t  wavenumbers for which the Eulerian and Lagrangian spectra 
are different. The first example we will discuss is the horizontal tow spectrum 
HTSE,33(~) which was found a t  large wavenumbers to decay as KP. This decay is 
similar to that which is observed experimentally and is independent of the detailed 
nature of the Lagrangian convergence factor. The solid curve in figure 4 is a plot of 
the horizontal two spectrum given by (3.26) and ((332) where for the purpose of this 
plot we have chosen E,/p = 1.4 x lo5 J m3/kg, p,, = 700 m, ,uv = 7 m, N = 2.5 c.p.h., 
and f = 0.035 c.p.h. The dashed curve is the K = 0 limit of the Lagrangian horizontal 
tow spectrum given by (2.35), which is approximately the level of the Eulerian 
horizontal tow spectrum a t  small K.  The points plotted as a scattergram in figure 4 
are reproduced from an experimental result given by Katz (1975). The Katz result 
corresponds to a towed experiment conducted in the Sargasso Sea at a depth between 
700 and 800 m. This result is typical of towed measurements. While the agreement 
between our theoretical result and experiment is not perfect, the qualitative 
similarity between the two is apparent. We have not computed the theoretical 
Eulerian spectrum for wavelengths between 1 km and 10 km because this is not in 
either asymptotic region and would require a numerical integration. It is clear, 
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FIGURE 4. A comparison between the results of the canonical theory and experiment for a 
typical vertical displacement horizontal tow spectrum. 

however, that near 1 km the curve breaks to  a smaller slope and finally merges with 
the dashed curve at  approximately 10 km. There is a noticeable difference between 
our theory and experiment at very small wavenumbers (i.e. near the dotted curve in 
figure 4) where the Lagrangian and Eulerian spectra are approximately equal. This 
difference may indicate a departure from canonical equilibrium at small wave- 
numbers. Such a departure would not be surprising, since it is a t  these small 
wavenumbers where source contributions are thought to be strong. We should also 
point out that our theoretical tow spectrum assumes an infinite tow speed, while in 
the Katz experiment the actual tow speed was only about 2.5 m/s. At wavelengths 
greater than a few km finite tow-speed effects can be significant and may be 
contributing to the Katz result a t  the longer wavelengths. Also, our treatment does 
not include the translational or geostrophic modes which may contribute significantly 
to the measured result. 

As a final example of an Eulerian tow spectrum we now consider the vertical tow 
or drop spectrum VTSESa3(i). If the product LV, is somewhat less than unity, then the 
Eulerian vertical tow spectrum is approximately equal to  the Lagrangian vertical 
tow spectrum which, a t  small wavenumbers, is white a t  the level given by (3.28). If 
the product iv, is somewhat larger than unity, then the spectrum decays as t c3  and 
is given by (3.29). The solid curve in figure 5 is a plot of the vertical tow spectrum 
given by (3.29) and ((234) where for the purpose of this plot we have chosen E , / p  = 
1.4 x lo5 J m3/kg, p,, = 930 m, ,uv = 9.3 m, N =  3.0 c.p.h., and f= 0.042 c.p.h. The 
dashed curve is the i = 0 limit of the Lagrangian vertical tow spectrum given by 
(3.28), which is approximately the level of the Eulerian vertical tow spectrum at  
small 1.  We have not computed the theoretical spectrum at inverse wavelengths 
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FIGURE 5. A comparison between the results of the canonical theory and experiment for a 
typical vertical displacement vertical tow spectrum. 

between 0.004 c.p.m. and 0.04 c.p.m. because this would require numerical 
integration. It is clear, however, that below 0.04 c.p.h. the curve breaks to a smaller 
slope and finally merges with the dashed curve at  approximately 0.004 c.p.m. The 
dotted curve and the dash-dot curve are typical examples of measured vertical tow 
spectra which we have reproduced from results given by Gregg (1977). The curves 
given by Gregg are actually regression fits to two experiments which have been 
chosen for comparison simply because they are representative and were easy for us 
to reproduce. Again the agreement between the canonical theory and experiment is 
apparent. While there is some disagreement a t  very small wavenumbers, considering 
the simplicity of our model (i.e. infinite drop speed, constant N ,  periodic boundary 
conditions in the vertical, etc.) we believe that the comparison is quite favourable. 

For all of the results we have presented here the values of N andf were those which 
were appropriate for the particular experiment under consideration. The parameters 
Eo, ph, and pv were adjusted to  obtain reasonable agreement with experiment. While 
these parameters were adjusted, the resulting values are all consistent with each 
other and it is clear that we could have chosen a single set of parameters and obtained 
fair agreement with all of the data sets. Considering the simplicity of our model, the 
degree of agreement we have obtained here is striking. We have thus demonstrated 
that the assumption that the oceanic internal wave system is near canonical 
equilibrium can yield expressions for various marginal spectra associated with both 
moored and towed measurements which are in excellent qualitative agreement with 
experiment. In  order to accomplish this it was important to consider the role played 
by strong dynamic nonlinear interactions in limiting the participation of those modes 
which correspond to small lengthscales. It was also important to  distinguish 
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Parameter Cairns & Williams Pinkel Katz Gregg 
Eo/P (J m 3 / W  1.2 x 105 4.2 x 1 0 4  1.4 x 105 1.4 x 105 

p h  (m) 7.0 x lo2 4.0 x 10' 7.0 x lo2 9.3 x lo2 
CY (m) 7.0 4.0 7.0 9.3 
A 1.1  2.7 2.1 0.4 
b'n (m) 2.1 x 102 5.3 x 1 0 2  4.8 x lo2 1.6 x lo2 
v, (m) 3.8 9.5 8.6 2.8 

TABLE 1. Values of the various parameters used in the comparison between theory and 
experiment and the values obtained for the nonlinear energy parameter A 

carefully between Lagrangian and Eulerian variables. It was necessary, therefore, to 
go beyond the simple treatment which equipartitions energy among all of the 
internal wave modes and considers only Lagrangian quantities. 

We have considered three distinct cases for which the phase-space density function 
has the Gaussian form given by (2.7). In  all three cases expectation values of 
Eulerian quantities which are obtained from the corresponding Lagrangian 
quantities by using the transformation (3.1) can be computed exactly. The scenario 
referred to as case I is, in fact, just the above simple treatment. It is clear that case 
I is not adequate to describe the oceanic observations. We have included it here for 
completeness since it is the case usually associated with canonical equilibrium. The 
scenario referred to as case I1 is the one that is usually considered to be appropriate 
for the oceanic internal wave system. There are, however, several difficulties 
associated with this case which were discussed in $2. The scenario referred to as case 
111 is the one which we propose may eventually provide a first-principles explanation 
for the experimental observations. 

I n  principle it should be possible to  compute the lengthscales ph and pv from a 
detailed knowledge of the nonlinear interactions once the level E, has been specified. 
Such an investigation is important for a full understanding of the physics, but it is 
beyond the scope of our considerations in this paper. It has not been our intent to 
present this work as complete. Rather, we have sought only to present enough 
evidence to support a reasonable argument in favour of case I11 and more 
importantly to elucidate the differences between Lagrangian and Eulerian spectra. 
Many important, and we believe fruitful, investigations remain to be done. However, 
i t  is important for us to  demonstrate now that the various values we have chosen for 
the parameters are consistent among themselves and with the basic tenets of case 
111. I n  table 1 the various values of the parameters E,/p ,  p,,, and pv which were used 
in our comparisons to experiment are given. From the table it can be seen that all 
of the values are within a factor of 3.5 from each other, and if we neglect the Pinkel 
result, which was nearer the surface than the others, then the variation is even 
smaller. We should point out that in adjusting the above parameters we have fixed 
the ratio ph/,uv a t  100. There was no particular reason for this choice other than 
convenience and i t  seems to  work well. Certainly some adjustment of this ratio is 
possible. In  fact, in view of the simple constant N model we have used, all of the 
above values should be considered only rough estimates. 

In  table 1 we also present the values of a nonlinear energy parameter h for 
each of the experiments, where for convenience we have set the parameter c = 
(,uhf/Pvm2-1 (defined in Appendix A) equal to unity. The nonlinear energy 
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parameter A, which is defined and computed in Appendix A, should be of order unity 
if case 111 is to be considered reasonable. The parameter h is a relative measure of 
the strength of the nonlinear interactions which, if it is much larger than unity, 
indicates that  the nonlinear interactions are too large for the weak interaction 
approximation to  be considered valid. On the other hand, if h is much less than unity, 
then the nonlinear interactions are too small to provide the required large- 
wavenumber cutoff. As can be seen from the table all of the values for A are of order 
unity. We also note that all of these considerations are entirely consistent with the 
arguments given by Holloway (1980, 1982) concerning the breakdown of the weak 
interaction approximation. 

Finally, in table 1 we give the values of the Eulerian lengthscales v,, and vv, where 
again we have set the parameter c equal to unity. All of the values are within a factor 
of 2.5 of each other and are, therefore, consistent among themselves. We note that 
the Eulerian lengthscales are of the same order of magnitude as the corresponding 
Lagrangian lengthscales and this is consistent with case 111. This also means that 
Eulerian tow measurements cannot reveal the details of the Lagrangian convergence 
factor h(k ) .  The transition into the Eulerian decay (i.e. K - ~  or 1 r 3  for the one- 
dimensional tow spectra) occurs at approximately the same value for the 
wavenumber as does the transition into the decaying part of the Lagrangian 
convergence factor and, thus, masks the details of h(k).  We emphasize again that the 
above values should be taken as rough estimates, and that in this paper we are only 
trying to establish reasonable consistency. 

In  our earliest consideration of these methods (Allen &, Joseph 1988) we had not 
fully appreciated the role of the nonlinear interactions in establishing the Eulerian 
lengthscales vh and v,, and considered the case for which the Eulerian lengthscales 
were much larger than the corresponding Lagrangian lengthscales. It is now clear 
that  this was not a physically meaningful case. Thus, some of the detailed results 
presented in that paper are not physically meaningful, but the basic concept and the 
general methods are the same as here and remain valid. It is clear that a more 
detailed investigation of the role of strong nonlinear interactions within the 
Lagrangian frame is needed. As pointed out earlier, it  should be possible to compute 
the Lagrangian lengthscales ,uh and p, from a detailed knowledge of the nonlinear 
interactions, and this would then establish a precise condition for the strength of the 
nonlinear interactions. This is an important subject for future investigation. 

While our comparison to experiment has tended to emphasize canonical 
equilibrium via case 111, the more important result is our relation between Eulerian 
and Lagrangian spectra and the demonstration that the two can be significantly 
different. None of the marginal Eulerian spectra which are usually measured are very 
sensitive to the details of the underlying Lagrangian spectra. Thus, it is possible that 
the Lagrangian spectra differ considerably from canonical equilibrium and still result 
in Eulerian spectra which are entirely similar to  those obtained from case 111. It is 
important to realize that the fundamental dynamical processes directly impact the 
Lagrangian spectra but are masked in the Eulerian spectra by the advective tail. 
Experiments which obtain Lagrangian information are required in order to  study 
these fundamental dynamical processes. For example, dye measurements with coded 
dye, or in conjunction with vertical temperature measurements, or perhaps some 
type of card experiment (Munk, private communication) would be useful for 
determining the decaying part of the Lagrangian wavenumber spectrum. Other 
possible experiments might be suggested, but it is clear that some measurement 
which explores this issue is needed. 
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Another interesting and potentially important result is that the four-dimensional 
Eulerian frequency wavenumber spectrum is not confined to the dispersion surface. 
So far as we are aware no experimental evidence concerning this issue exists. The 
Doppler sonar observations of Pinkel (1984) are a step in this direction, but so far 
have been able to yield only two-dimensional frequency wavenumber spectra. Since 
the two-dimensional spectra are obtained by integrating over two components of the 
three-dimensional wavevector, information concerning the existence of delta 
functions (i.e. sharp peaks) which confine the system to the dispersion surface is lost. 
Our expressions can be used to compute theoretical expressions to  be compared with 
Pinkel's results. While such a comparison would certainly be interesting and the 
calculations are tractable, they are also non-trivial and have yet to be completed. 

In  this paper, as previously noted, we have neglected the translational modes. By 
so doing we have ignored possible alterations to the spectra in regions with 
substantial mean currents as well as some potentially important issues concerning 
diffusion. The methods we have introduced here are also capable of including the 
translational modes and thus can be considered for a variety of additional 
investigations. This is another potentially important area for future research. 

As a final point we note that the eikonal technique which is discussed by Henyey 
& Pomphrey (1983) is also a method for describing the effects of the advective 
nonlinearity. Subsequently Flatte', Henyey & Wright (1985) have used the eikonal 
technique in a numerical Monte-Carlo study to show that a t  small scales an initial 
distribution of test wave packets evolves to the GM distribution. They argue that the 
eikonal technique avoids the weak interaction approximation and can be used to  
treat strong nonlinear interactions. However, it is important to realize that their 
treatment is in terms of Eulerian variables and includes only contributions from the 
advective nonlinearity. They completely neglect contributions from the dynamic 
nonlinearities, and for that case our use of the weak interaction approximation in the 
canonical theory, since the dynamics is in terms of Lagrangian variables, is exact. 
Their results from the eikonal technique and ours from the canonical theory both 
seem to imply that the observed distribution of small-scale internal waves is a 
consequence of advection. In  this sense the two methods seem to complement each 
other. On the other hand, there are differences between the two methods which need 
to be understood. The canonical theory treats the Lagrangian excitations as waves 
while the eikonal technique treats the Eulerian excitations as waves. The canonical 
theory includes the statistics as an integral part of the theory, while the eikonal 
technique treats the statistics by the use of Monte-Carlo methods. The canonical 
theory predicts Eulerian spectra which exhibit non-wavelike properties a t  small 
lengthscales. so far as we are aware, the Monte-Carlo methods have not been used to 
generate a four-dimensional frequency wavenumber spectrum which might reveal 
non-wavelike behaviour. Our method can also be used to  study the statistics of the 
time evolution of an initial wavepacket in the presence of a random internal wave 
background. This corresponds to the problem studied by using the eikonal technique 
and we suspect that  a comparison of the two methods would reveal some differences. 
In  any case the relation between the two methods needs clarification. 

We have now established that case 111 is consistent with the experimental 
observations. We have not ruled out, however, that  case I1 may still be the 
appropriate description for oceanic internal waves. On the other hand, if case I1 is 
the appropriate description, then h(k) is determined by some external heat bath but 
the Eulerian lengthscales vh and v, are the same as in case 111. This is because the 
Eulerian lengthscales can be obtained from the area under the corresponding moored 
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frequency spectrum, which can be determined experimentally and are independent 
of whether case I1 or case I11 is the appropriate description. In either case most of 
the observed tow spectrum is a t  wavenumbers which are in the advective Eulerian 
tail. While it is possible that case I1 is the appropriate description, we believe that 
case I11 offers the more attractive possibilities. 
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Appendix A. Some important Lagrangian quantities 
In this Appendix we compute a number of Lagrangian quantities which are used 

throughout the paper. We first compute the Eulerian lengthscales vh and v,. By using 
(1.18), (2.7) and (2.14) it is straightforward to show that 

By using (2.3), (2.38), working in cylindrical coordinates, setting 1, = I ,  y, and 
evaluating the horizontal integrations (A 1) reduces to 

where 

b2[1 + (a2 - 1) 2) 
[ 1 + CXZ] 

v; = 

, b = -, f c = a2b2-1. N 
a=!% 

P V  

By using the same procedure it is straightforward to show that 

Finally (A 2) and (A 4) can be written 

Eo a2 

4(2x3)$N2pg pv 
v; = [A,+b2A,+b2(a2-1)A,],  

and 

where 
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and 

We now obtain an estimate of the strength of the nonlinear interactions. It is 
sufficient for our purposes here to consider the first contributing nonlinear term from 
the Jacobian determinant. If we define sag such that 

then the Jacobian determinant J can be written as 

= +[sii+sz2+s331+ [(s11s33-s~3s31)+ ( s 2 2 s 3 3 - s 2 3 s 3 2 ) + ( s 1 1 S 2 2 - s 1 2 s ~ ~ ) ~  

+[S13(sZl s 3 2 ~ s 2 2 s 3 1 ~ ~ s 2 ~ ~ S 1 2 s 3 1 ~ S l l  s 3 2 ) + s 3 3 ( S l l  s 2 2 - S 1 2 S P l ) 1  

= l+F,+k',+lil,, (A 12) 

where the F,, 1 < n 6 3, correspond respectively to the terms in square brackets. We 
note that F,, which is linear in the displacements, is the divergence of the 
displacement and in our non-compressional approximation is zero. The first 
contributing nonlinear term is F2 which is quadratic in the displacements. 

In our treatment of the compressional potential energy we expanded l/JY-' about 
the point J = 1, and if that  expansion is to  be valid then the contributions from the 
F, must be small relative to unity. We can estimate the strength of the nonlinear 
interactions by computing the expectation values of the F,. By using (2.7), (2.14) and 
(A 12) it  is easy to  show that E[4] = E[F3] = 0 so that the lowest-order contributing 
term is described by E[Fi]. We therefore define the nonlinear energy parameter h 
such that 

A2 = E [ F 3  (A 13) 

If A is of order unity, then the expansion is in the process of breaking down. A precise 
statement of this condition requires a more detailed study, but the above is adequate 
for our purposes here. 

From (A 12) it can be seen that Fi consists of a number of terms which are quartic 
in the displacements. For the Gaussian distribution given by (2.7) the expectation 
value of a quartic term can be written as products of expectation values of pairs of 
displacements. It is tedious but straightforward to  show that the following 
expectation values are required for this calculation : 

E [ 4 , ]  = E[sflz] = HI, (A 14) 

(A 15) 

(A 16) 

E[si3] = -2E[sll s ~ ~ ]  = - 2E[s13 sgl] = - 2E[sZ2 s ~ ~ ]  = - 2E[sZ3 s ~ ~ ]  = 2B1,, 

E[s?,] = -2E[si3] = Ba213, 
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where the common scale factor B is given by 

and 11-16 are given by the integrals 

and 

l 7  x2( 1 -x2) b2[ 1 + (a, - 1) x,] 
[1+cx2] I ,  = i J I d x  [ 1 + C X , ]  [3+ 

x2( 1 - x2) 
[ l  +cx2] ' 

I ,  = lo d x  

b2[ 1 + (a2 - 1 ) x,] 

(A 25)  

(A 26) [ 1 + ex'] 

It is then straightforward to  show tha t  

h = B[51: + 21314 + 21, I ,  +I: + 2IE +@. (A 27) 

Finally, the integrals 11-1, can be written in terms of the four basic integrals 

1 
A 2 - b 2 A , - 6 2 ( ~ 2 - 1 ) A ,  , (A 30) 1 1 e+b2(a2-  1) )  -r( 1 -b2)  +b2(a2- 1) =-[( C 3c C 

x2( 1 -x2) [ 1 + (a2- 1) x2] 
[ 1 + C X 2 ] 2  

f4 = b 2 [ d x  

(A 31) 

where A,-A4 are given by (A 7)-(A 10). It then follows tha t  

I ,  = a [ 3 f 1 + f 4 ] ,  I ,  = fl, I ,  = f,, 
I ,  = f2, I ,  = i [ f1- f4] ,  and I ,  = : [ f 1 + 3 f 4 ] .  

We note from (A 27) tha t  h is proportional to  B and from (A 20) tha t  B increases 

(A 32) 

8 FLM 204 
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rapidly as the lengthscales ,u,, and ,uv are decreased. Thus, the nonlinear energy 
increases rapidly with decreasing Lagrangian lengthscale. 

Appendix B. The calculation of M,,(R,  m, 7) 
In this Appendix we obtain an exact expression for the function M,,(R, m, 7) which 

was defined in (3.10). The calculations outlined here are extremely tedious but the 
final result, while complicated, is tractable. The statistical calculations we will 
consider here are intricate and it is helpful to write the various expressions in terms 
of real independent dynamical variables instead of the complex pi and qi. Our 
calculations will also involve two different times separated by 7 ,  and it is important 
to express the dynamical variables all a t  the same time and then use the weak 
interaction approximation to  express the T dependence explicitly. This has been done 
in (2.14) which can be used to rewrite the Lagrangian displacement in the compact 

gi13(7) = h c o s  (Qj7), 
li 

cos (Qj7) - Zjl sin(Qj7) , 1 

and gi23(7) = b s i n  (~,7). 

By using (2.6) and (B 2) the free-field Hamiltonian can be written 
4 

4M 
H,(4 = r, iQ"u;, 

U-1 

and by using (2.7) and (B 2) the phase-space density function can be written 

where we have suppressed explicit display of the time t. 
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The above expressions can now be used to compute M,,(R,  m, 7 ) .  The expression 
given by (3.10) assumed spatial homogeneity and equated m to m’. In order to 
demonstrate spatial homogeneity we require a more general expression which by 
using (A 14) can be written 

M33(R> m, m’> = E[(s31 + (‘31 ‘22-’32 s21) f  

x {sil+ ( s j l s~2-s~2s~l )}exp{- i [rn~s-m’~s’  111, (B 12) 
where we have suppressed display of the arguments r and t ,  the subscript L, and the 
prime on s and its components denote that its arguments are r’ and t’. By using 
(B 1) the argument of the complex exponential in (B 12) can be written 

where 

The evaluation of the expectation value in (B 12) will involve, apart from the 
complex exponential, products of displacements which are of quadratic, cubic, and 
quartic order. Thus, by using (B 1 )  in (B 12) i t  is easy to see that we will require 
expectation values of the form 

4M 

(u,, ... u,,) = E 

where 2 < n < 4. It is then straightforward by using (B 11) and (B 15) to show that 

where 

a a 
aQ,, aQ,, . UJ = (i)”-. . .-E(Q), 

By using (B 16) all of the terms in (B 12) can be evaluated exactly. 
We shall illustrate the procedure by considering the term which is quadratic in the 

displacements. I n  order to evaluate this term we will require the expectation value 
(uU1uJ which by using (B 16) and (B 17) is found to be 

Then by using (B I) ,  (B 3)-(B 9), and (B 18) it is tedious but straightforward to  show 
that 

where the bracket ( ) denotes an expectation value of the form given by (B 15) and 
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and 

The argument of (B 17) can be evaluated by using (B 3)-(B 9) and (B 14) to obtain 

We note that (B 24) and hence E(&) is spatially homogeneous. Therefore, (B 19) is 
also spatially homogeneous. While we have illustrated the procedure by considering 
the simplest term in (B 12), the calculation of all of the others, albeit more tedious, 
are entirely similar. It is found that all of the other terms are spatially homogeneous 
and hence (B 12) is spatially homogeneous. We have thus verified the homogeneity 
property used in obtaining (3.9) and may set m = m‘ and suppress the display of m’. 
By using the above procedure i t  can be shown that 

M33(R, m, 7) = G3,(R, m, 7) exp - Z C maDapl(R,7) mp}, (B 25) 

(B 26) 

{ a11 j:l 

and 

The expression for G3,(R, m, 7) can be written in terms of 

D,+(R, 7) = CLsa&O, 0) - C,scz&R, 7). 

and (B28) 

such that 

G 3 3 ( R 3  m, ‘) = (-C3311-K31 K31-2i[C,311 K 2 2 ~ C 2 ~ 1 2 K 3 1 ~ c 3 3 1 2 K 2 1 ~ C 2 3 1 1 K 3 2  

+K31(K31 K22 -&2 &21)I  + ‘3311 C2222 + ‘3322 ‘2211 -2’3312 c221Z + 2c2312 ‘2312 

- 2c2311 ‘2322 + ‘3311 K 2 2  K22 + ‘3322 K 2 1  K21 - 2c3312 K21 K 2 2  + 2c2312 K 2 2  K31 

+ 2‘2312 K21 K32 - 2’2311 K22 K32 - 2c23T2 K21 K31 + ‘2211 K32 K32 + ‘2222 K31 K31 

- 2 C 2 2 1 2 K 3 1 K 3 2 + K 3 1 K 3 1 K 2 2 K 2 2 + K 3 2 K 3 2 K 2 1  K21-2K31K22K32K21). (B 29) 
While the expression given by (B 29) is complicated and leads to subsequent tedious 
calculations, it is tractable and can be used to obtain exact expressions for the 
various Eulerian spectra. 
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Appendix C. The computation of SEs3,(k, w )  

As has been pointed out in $3, if at least one of the ha is large, then the dominant 
contribution to the integral in (3.1) comes from values of both R and 7 which are 
small. Because of the structure of the C,,,(R, 7) the lowest-order correction terms, 
which are quadratic in R and r ,  are additive. Since the function G,,(R, k, r )  involves 
derivatives with respect to the R, we may write the approximation 

PI 
d7G3,(R,k,0)exp - C Z kaDaB(R,O) k { 9 1  p:1 

x e x p { - i ( k . R - w 7 ) - 7 * ( ~ ~ k ~ + ~ $ k ~ ) } ,  (C 1 )  

where 

and it is assumed that h(Z) is of the form given by (2.38). The r integration may now 
be performed to obtain the result given in (3.19) and (3.20). 

To evaluate (C 2) and (C 3) we use (2.5) and (2.38) to  obtain 

and 

where b is defined in (A 3). The above integrals reduce to standard forms which are 
readily evaluated to yield 

where a is defined in (A 3) and 

The approximate expression for SEs3,(k, w )  given by (3.19) involves the wave- 
number spectrum fiEs33(k) defined by (3.20). We shall now obtain an approximate 
expression for $Es33(k) which is valid if any one of the k, is large. It is clear from the 
length of the expression for G,,(R, k, 0) given by (B 29) that  the following calculation 
is extremely detailed. What we shall do here is sketch out the salient steps and then 
simply state the final answer. We first consider the exponential factor in M,,(R, k, 
0) and expand the various DaB(R,O) in powers of the R,. The resultant expression 
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contains cross-terms of the form R,R, and it  is convenient to  eliminate them by 
means of the transformation 

and 8akh k3 w1 
C '  w3 = R3- 

where d and C ,. are independent of R and will be defined in what follows. The 
expression for SEs33(k) then takes the form 

flEs33(k) = 7 d3wG,,(w, k )  exp { -i(h3 w3 + EwI) - (Aw~ +Bw$ + C W ~ ) ) ,  (C 12) 
kl 'I 

where 

B = (a+ 36) k i  + 4&:, 

C = 4(Cki + 2dki), 

and the quantities a, B, and fj were defined in Appendix B. 

one-dimensional integrals of the form 
The three-dimensional integration over w can then be written as a product of three 

where H , ( z )  is a Hermite polynomial. The final result of the computation is 

where X"(k) depends upon the unit vector f but not upon the magnitude k. The full 
expression for 8(k)  is extremely complicated but can be written as a sum of terms 
such that 

s"(i) = 8,@) - 16g2(k) + l68,($)- 328Jf) +g5( i )  - S & ( f )  + 16s",(f), (C 23) 

#,(f) = 8 ~ ,  (C 24) 
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(C 26)  
- - 4aek2 d 
S,(k) = -2 + --[ kt(6- a) - k;(3a+ 6) + C k,A 

2a 
kEB + -- [4Cki( (a+ 36) ki + (36+ 6) ki) 

+ (a-6)2k: + (&+ 36)’k; + 2k: ki(a2 + 2h6+ 56’)] 

4k; D2( (3&+ 6) k;  + (h+ 36) ki) 

+ @ ~ Z - b ) ~ k ~ + q 3 ~ ~ + 6 ) ~ k ~ + 2 ~ k :  k : (5$+2~6+6~)  

- 648zE ((a- 6) k i  + ( 3 ~ +  6) k: - 16$:; k i ) ]  , 

16a”k2 k2 (  12k2 k 4 )  16&k: k;(6-a) ( 2 - 2  kJ 
BC 

1 3 1 2 - - 2 + 2  + 
c2 C C2 &(R)  = 

- 8a3k; k: E (  6 - 2  kJ [ (6-&)kg+4k: 

+ 2--1 

k, XC2 

- 1  2a”Lk: ( k; c)[ 8$kt Ac k i D  ( 2 - - 9 ( ( 6 - h ) + -  +--(4~k;-kE(a+3b))~ 
32a”Lk:) kEBC C 
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4~2k; (a+  36)]  
c [&k; - k:(&+ 36)] - +@-a)- 

- 4m(b-G) k: k; E 
k,  ABC 

By setting k = k i  the form given by (3 .21)  is obtained. 
The expression for HTS.,,,(K) is obtained by setting k, = K and integrating (C 22) 

over k ,  and k,. To simplify the calculation we make use of the fact that, for the values 
of the parameters used in this paper, B is of order unity, a % 1 ,  b < 1 ,  and ab is 
of order unity. Hence, a and 6 are of order unity while F %  1 and c g  1 .  Then 
A z kg(3&+6), B M k;(a+36),  c M 4&:, and E x k,. If we retain only the dominant 
terms in sEs3,(k) and change the k, and k, to k, = KE, and k, = KE,, then we find that 
the only 6,  dependence occurs in the exponential term exp { -ti/ 16C( 1 + ti)} which 
permits the 6, integration to be performed. The remaining 6, integrations are then of 
a standard form and easily obtained. The result of the calculation is given by (3.26) 
where the constant W is given by 

2nK W =  
( ( 3 a + 6 )  

4(6+ a) (2W-$)  - 2E(P + 2a6+ 5a2) - 2E(E'+ 2 d +  56') 
(3ci+6) (36+ a) 

I- $(a+ 36) qa- 6)Z 
F + c(3a+6) 

+ 
Similarly an expression for VTSE,,,(i) can be obtained by setting k, = i and 

integrating ( C 2 2 )  over k, and k,. By making use of the approximations used in 
evaluating HTS,,,,(K), namely a and 6 are of order unity, c %  1 ,  E < 1 ,  k ,  = it,, and 
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k2 = iE2, the resulting integrals are easily evaluated. The result is given by (3.29) with 
the constant given by 

(C 34) 
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